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ABSTRACT 

Natural fibre silk consists of two proteins i.e. sericin and fibroin, which synthesized at the middle and posterior silk 

gland of silkworm, respectively. Sericin is glue proteins, which envelop the core protein fibroin and constitute about 

15-25% of cocoon weight. It is hydrophilic in nature and composed of 18 different kinds of amino acids among these 

the serine, glycine, aspartic acid and threonine are most dominant one. Sericin possesses tremendous biological 

properties like antioxidant, antibacterial, anti-tyrosinase, UV resistance, anti-cancerous which open a wide scope for 

its application in various fields. Further, moisturizing ability of sericin serve as valuable ingredients for cosmetic 

industries for developing hydrating skin creams and protection against ultraviolet radiation as well as it also utilized 

as therapeutic agent for wound healing. In the present review the medicinal properties and its implication has been 

discussed.  
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Introduction 

Silk is a natural polymer protein produced by the family 

of Bombycidae and Saturniidae of the order Lepidoptera 

(Jolly et al., 1974). Silk fibre consists of two major proteins 

sericin and fibroin which is secreted from different regions of 

silk glands. Sericin is synthesized in middle silk gland 

(MSG) of mature silkworm larva, and fibroin is secreted 

from posterior silk gland (PSG) (Gamo et al., 1977). Silk 

fibres constitutes 97% protein in which 70-80% is fibroin and 

20-30%is sericin and remaining part is carbohydrate 

pigments waxes and minerals (Kongkachuichay et al., 2002). 

Based on the feeding sources of silkworm sericin protein is 

classified into two major categoriesi.e mulberry and non-

mulberry sericin. The mulberry sericin is synthesized by 

silkworm Bombyx mori, which solely feeds on mulberry food 

plants and synthesize sericin protein which have significant 

commercial values. Similarly, non-mulberry or vanya sericin 

is synthesized by Samia cynthia ricini, Antheraea 

assamensis, Antheraea mylitta, Antheraea paphiaand etc. 

Further, sericin characteristics may depend on diversity of 

silkworm, primary host plant and other environmental 

conditions. Jena et al. (2018 and 2021) confirmed that the 

depending on the ecorace and food plants that the silkworm 

feeds on, affect the tasar sericin nature and properties. Sericin 

is basically glue protein for holding the silk filaments tightly. 

Tasar sericin is composed of 17 types of amino acid, among 

various amino acid it mainly consist of serine, histidine, 

glycine, threonine, tyrosine, glutamic and aspartic amino acid 

(Jena et al., 2018a). Both sericin and fibroin protein play 

significant role in increasing the rigidity, strength and 

maintaining the constructional intrinsicity of cocoons. 

Silk Protein 

Silk protein consist of both fibroin and sericin. Fibroin 

is the hydrophobic glycoprotein which constitutes 

approximately 70-80% of cocoon. Molecular structure of 

fibroin revealed that it is heterodimeric ,consist of heavy 

chain H (MW 395kDa), light chain L(MW 25kDa) and small 

subunit P25 with (MW 27kDa). (Gamo et al., 1997; 

Prudhomme et al., 1985; Couble et al.,1983). The genes of 

Heavy and light chain are located on chromosome 25 and 14 

respectively. (Kimura et al.) In case of both B. mori and A. 

mylitta expression of P25 gene is control during larval 

development (Prudhomme et al., 1985). The fibroin 

microfibrils are clustered into fibril bundles, and when they 

are put together, they form a single silk thread. Two 

filaments are covered by sericin layer and produce silk thread 

during cocooning process (Padamwar and Pawar, 2006). 

Fibroin mainly exist in two forms β sheet which is crystalline 

form and other is non crystalline form. Sericin is 

glycoprotein, hydrophilic in nature and constitute about 15-

25 % of cocoon total protein. It firmly holds the fibroin and 

together formed stable structural component of cocoon 

(Kaplan et al., 1994; Vollrath et al., 2001; Jin and Kaplan, 

2003). Molecular weight of sericin protein differs depending 

upon the method of their isolation. A set of proteins with 

molecular weights ranging from 20 to 400 kDa are found in 

sericin, which is derived from the mulberry B. mori (Kumar 

et al., 2017; Bari et al., 2018 and Kunz et al., 2016). It has 

extremely high serine content (40%) and a glycine content 

(16%) (Kundu et al., 2008). Three distinct polypeptides, 

measuring 70 kDa, 200 kDa, and a greater percentage of 

more than 200 kDa, are present in the sericin of the Indian 
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non-mulberry tropical silkworm A. mylitta (Dash et al., 

2014). Based on the isolation method, molecular weight of 

sericin also varies (Rajput and Singh, 2015 and Padamwar 

and Pawar, 2004). When sericin isolated from cocoon shell, 

polypeptide molecular weight is ranging between 40-400 

kDa, and 80-310 kDa when extracted from silkworm, this 

further depend upon the various factors like temperature, pH, 

chemicals, weight, preparing time.  

Sericin is a versatile protein with lots of remarkable 

properties such as antioxidant, antibacterial, UVresistance, 

anti-tyrosinase which signifies its use in various cosmetic, 

pharmaceuticals, textile and food industries, for human 

beings it is a gift of a nature but in the field of sericulture it 

has been discarded for a long time. According to an 

estimation 50,000 tons of sericin discarded in waste water 

during degumming process in silk industries. (Gulrajni, 

2005), which alleviate the biological and chemical oxygen 

demand of water bodies. (Fabiani et al., 1996). The 

extraction of sericin from wastewater and its prospective 

utilization could have strong impact on economic, 

community, and environmental point of view. The purpose of 

this review paper is to explore the medical based applications 

of sericin. 

Application of Sericin 

Sericin has recently been used extensively in the 

cosmetics products, as an antioxidant and anti-apoptotic 

substances, as a support for enzyme immunobilization, as a 

supplement in animal cell culture media, as a dietary 

supplement, as well as a biomaterial for cell culture, drug 

delivery, and gene delivery (Lamboni et al., 2105 and Dash 

et al., 2008). Addition of 0.5% sericin to cell culture medium 

improved the resistance to oxidative stress and quality of 

bovine embryos in vitro (Isobe et al., 2014). Sericin contains 

polar amino acids that enable crosslinking to form blends 

with other polymers, increasing the mechanical resilience of 

SER-based biomaterials (Cao et al., 2016 and He et al., 

2017). 

 

Fig. 1 : Attributes of Sericin 

Sericin in Wound Healing 

Sericin possess some of the tremendous properties like 

hydrophilicity, compatibility and biodegradability that make 

it good wound healing agent without causing any allergic 

reaction. Numerous studies demonstrated that sericin has an 

ability to promote collagen formation, migration, and 

proliferation which is correlated to its therapeutic effects 

(Aramwit et al., 2007, 2009, 2010). Sericin contain sulphur 

rich amino acid methionine and cysteine which involved in 

the synthesis of collagen and play significant role in wound 

healing process (Aramwit et al., 2009). Sericin enhanced the 

attachment and proliferation activity of primary cultured 

human skin fibroblast cell which are thought to be crucial 

steps in healing of skin leisons. Sericin concentration (100 

ug/mL) facilitates the migration of fibroblast cell L929 and in 

in vitro injury model, the sericin treated wound recovered 

very quickly than control wound. (Aramwit et al., 2013) 

Sericin based cream formulations (8% sericin in silver 

zinc sulfadizine) have significant role in preventing second 

degree burn wound without causing any severe reactions. In a 

clinical trial on 29 patients with 65 burns, treated with sericin 

the result showed that 70% restoration of epithelium tissue 

on the surface of burn area and enhanced the process of 

healing in only 5-7 days than control group (treated 

withstandard silver zinc sulfadizine). Further Aramwit et al., 

2007also concluded that impact of sericin on wound healing 

process in rats. The author concluded that application of 8% 

sericin cream was effective in recovery of 90% wound and 

accelerated the reduction of size of wound without showing 

any ulceration with little inflammatory response. (Aramwit et 

al., 2007). 

Sericin significantly enhanced antioxidant activity and 

wound healing. Sericin-based formulations can accelerate the 

healing of incision wounds.In vitro wound healing 

experiment on mouse, Ersel et al., 2016 confirmed that 1% 

sericin gel was superior to treat the incision area of mouse. 

Sericin act by increasing epidermal thickness which is related 

to collagen synthesis by fibroblast cell and decreases the 

vascularized necrosis. Histo immuno chemical analysis 

indicated increased level of superoxide dismutase (SOD), 

catalase (CAT), and glutathione peroxidase (GPX) that 

revealed the positive antioxidant activity in mouse treated 

with sericin (Aramwit et al., 2013). 

In addition to biomaterials for wound healing (Gilotra et 

al., 2018) and artificial skin (Bhowmick et al., 2018), sericin 

nano formulations are also available for regeneration tissues 

(Mehrotra et al., 2019). Studies have demonstrated that SER 

can stimulate the proliferation of skin keratinocytes and 

fibroblasts (Kunz et al., 2017) and may also aid in the 

healing of wounds by promoting the deposition of collagen 

(Tsubouchi et al., 2005). Several sericin based nano 

formulation revealed positive impact in alleviating recovery 

of wounds. Dialdehyde carboxymethyl cellulose and silk 

sericin have also been used in other biomedical applications, 

including tissue engineering, artificial skin, and wound 

dressing (Yang et al., 2019; Wang et al., 2019). 

A dressing material with exceptional qualities and 

antibacterial activity is sericin hydrogel. By utilising these 

qualities, Tao et al. (2019) created a brand-new, non-toxic 

hydrogel with antibacterial activity and super-absorbent 

qualities that has the potential to be used as a wound 

dressing. They created a biomaterial with combination of 

sericin with PVA (poly vinyl alcohol) and silver nitrate 

nanoparticles. AgNPs-sericin/poly (vinyl alcohol) dressing 

shows excellent properties like high permeability, good 

compressibility and absorpitivity which showed outstanding 

biocompatibility and could load and release both small 

molecules and Ag-ENPs. It also worked by inhibiting the 

growth of Staphylococcus aureus, Escherichia coli and 

Pseudomonas aeruginosa. 

Liu et al. (2018) created a film with durable 

antibacterial properties. It was created using Ag-ENPs-

polydopamine sericin/Agar and demonstrated outstanding 

cytocompatibility on fibroblast NIH/3T3 cells. It also 
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demonstrated significant potential as a novel wound dressing. 

Using PVA-SER blended mats, Gilotra et al. (2018) also 

investigated the potential of silk sericin based nanofibrous 

mat for treatment of chronic wound like diabetic foot ulcers. 

This is novel dressing materials having scavenging potential, 

microbicidal activity, and bulging capacity ,also PVA mats 

release slowly releases the sericin which heals wound 

approximately threefold greater speed than conventional 

dressing material they claim that SER-based dressing is a 

promising ENMs candidate. 

Bhowmick et al. (2018), created a skin substitute for 

second-degree burn care made of mPEG-PCL-grafted-gelatin 

(Bio-Syn)/hyaluronan/chondroitin sulfate/SER nanofibers. It 

was found that the nanofibers (which primarily contained 1 

percent of sericin) displayed enhanced levels of epithelial 

protein expression as well as better performance. Similar 

wound dressing devices are also described by Tao et al. 

(2019) and Bakhsheshi-Rad et al., (2020) while creating 

sericin-based poly(vinyl alcohol), chitosan, and tetracycline 

porous nanoparticles and sericin-based poly(vinyl alcohol), 

chitosan, respectively. When tested on animals, these 

materials demonstrated improved wound healing abilities, 

and they performed better than the control in terms of re-

epithelialization and collagen deposition. In addition, various 

sericin regenerative devices have been developed for the 

regeneration of articular cartilage (Yuan et al., 2020), sheaths 

for the regeneration of peripheral nerves (Rao et al., 2017), 

cardiac patches for the repair of the heart after myocardial 

infarction (Dong et al., 2020) and bone tissue engineering 

(Albu et al., 2016 and Chen et al., 2015). 

Use of sericin as antitumor  

Chemotherapy that are used in the treatment of cancer 

has been showing adverse side effect, affecting both normal 

and malignant cells, and due to its high cytotoxicity it affect 

the vital organ of body which limits its therapeutic potential 

(Cheok, 2012). Additionally, another issue is the 

development of chemotherapeutic drug resistance having 

reduced toxicity and biocompatibility which serve as potent 

antitumor drugs and in this regard silk protein sericinserve as 

great source (Huang et al., 2004). 

Zhaorigetu et al. (2001) investigated the impact of 

supplementing the diet of an animal model of colon 

carcinogenesis with 30% sericinand revealed that dietary 

sericin reduce the proliferation of colon adenoma via 

suppressing the expression of c-myc and c-fos oncogenes. 

Sericin's antitumor impact is accompanied by a decrease in 

cell proliferation, oncogene expression, and oxidative stress. 

Similar results with sericin supplementation were also 

reported by Sasaki et al. (2000) in a colon cancer model. This 

study demonstrated the sericin possess antitumor effects by 

reducing the frequency of aberrant crypt foci after a 5-week 

supplementation of 3 percent sericin. Kaewkorn et al. (2012) 

studied the effect of sericin against proliferation of colon 

tumour cells. Sericin has potential to inhibit the proliferation 

of colon cancer by accelerating cell apoptosis rate via 

reducing the expression of bcl-2 gene. Studies showed that 

small molecular weight sericin (61-132 Da) had significantly 

reduced the proliferation of colorectal cancer cells (SW480) 

when compared to normal fetal colonic mucosal cells (FHC). 

Nanoparticles have frequently been used as the delivery 

system for chemicals and biomolecular pharmaceuticals, 

such as anticancer drugs and therapeutic proteins. Proteins 

are a suitable alternative to the synthetic polymers typically 

used in the production of nanoparticles because of their 

safety. In general, protein nanoparticles are advantageous due 

to their biocompatibility and biodegradability (Kunz et al., 

2016 and Zhao et al., 2015). Furthermore, neither the 

production of protein nanoparticles nor the following 

encapsulation process involved the use of any hazardous 

chemicals or organic solvents (Jain et al., 2018). 

Medicine that has been studied as a guest molecule on 

SER-nanoparticles is Doxorubicin (DOX), which serve as 

one of the most popular anticancer agents. SER-based 

nanoparticles showed promising effects attributed to 

molecular mechanisms involving integrated events started by 

(i) Drug-loaded SER nanoparticle internalisation caused by 

clathrin-modulated endocytosis (ii) drug release into 

lysosomes after nanoparticle breakdown, acid pH (observed 

into tumour environment) (iii)the stimulation of cell death 

processes such as apoptosis mediated by caspase-3, Bcl-2 

down regulation, and Bax protein over expression and 

(iv)Accumulation of nanoparticles in tumour cells as a result 

of the EPR effect (Elahi et al., 2021 and Kaewkone et al., 

2012). 

Sericin nano formulations are being linked to additional 

active components, such as vitamin B12-conjugated sericin 

micelles (Guo et al., 2019). According to Mandal and Kundu 

2019, micellar nanoparticles made of paclitaxel-loaded SER-

Pluronic F-127 induced cytotoxicity by causing quick uptake 

by breast cancer cells and subsequent activation of the pro- 

and anti-apoptotic proteins Bax and Bcl-2. In this experiment 

sericin (extracted from cocoon of A. myllita) mixed with 

pluronic F-127 and F-87 to developed appropriate 

nanoparticle with size range (100-110 nm). This nanoparticle 

is unique in terms of carrying both hydrophilic (FITC-inulin) 

and hydrophobic (paclitaxel). Sericin loaded paclitaxel 

nanoparticle have shown positive result against breast cancer 

MCF-7 cell by inducing programmed cell death. Annexin 

Staining revealed that it acts by increasing the level of Bax 

and reducing the expression of Bcl-2. In general, for cancer 

chemotherapy, isolated SER anti-tumoral effects were 

previously reported considering its integrated proapoptotic 

activities like decrease in caspase-3 expression, down 

regulation of Bcl-2, and human colorectal cancer cell cycle 

arrest (Kaewkon et al., 2012). To target tumors and respond 

to pH, sericin was used as a doxorubicin prodrug (Huang et 

al., 2016). 

Sericin based nanoparticle play significant role in drug 

delivery process. In this regard Hu et al., 2017 developed 

charged reversal sericin based nanoparticle (SSC@NPs) by 

fusing sericin and chitosan. SSC@NPs showed charge 

transition according to pH of environment, at neutral pH 

SSC@NP is negative and at acidic pH surface charge of 

SSC@NP is positive. More significantly, HeLa cellular 

uptake was encouraged by the charge-reversal feature of 

SSC@NPs. Additionally, DOX was loaded onto SSC@NPs 

before being pH-dependently released. HeLa cells have the 

ability to take up DOX-SSC@NPs, which then build up in 

endosomes and lysosomes where DOX was previously 

released into cancer cell nuclei. In conclusion, the surface 

charge-reversal SSC@NPs can act as a functional nanocarrier 

with great promise for pH-responsive drug delivery systems. 

Tumor treatment with phototherapy, which includes 

photodynamic therapy (PDT) and photothermal therapy 
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(PTT), have high efficiency to cure the metastasis growth 

(Gai et al., 2018; Jung et al., 2018). Recently Dong et al., 

2020 prepared (FA-Ser-Chol/IR780),a type of sericin 

conjugated with Folic acid cholesterol micelles loaded with 

IR780(a hydrophobic cation which shows absorption spectra 

at infrared region) for treatment of gastric cancer. VB12-

sericin -PBIG-PTX micelles have excellent biocompatibility 

and right particle size enable them to diffuse in the cell and 

target the CD320 receptor that are over expressed in gastric 

cancer cells. Micelles activates the apoptosis pathways, alter 

the transmembrane potential of mitochondria and 

significantly reverse the drug resistance phenotype. 

Use of sericin in tissue engineering 

In the field of biomedical and tissue engineering, 

naturally occurring polymers silk fibroin and sericin have 

received a lot of attention. (Wang et al., 2006). For tissue 

engineering biomaterial scaffolds is key components and 

sericin possesses various properties that serve as an ideal 

scaffold material as it supports cell adherence, migration, 

proliferation and differentiation as well it is biodegradable 

and biocompatible to the host immune system. 

Teramoto et al. (2005) formed the sericin hydrogel 

simply by adding 10% alcohol to a sericin solution without 

using any additional cross linking agents or radiation. This 

research identifies sericin hydrogel as a natural biomaterial. 

Despite its potential, pure sericin creates brittle films and this 

limits its used to employ as a biomaterial in tissue 

engineering (Mandal et al., 2009). Various methods have 

been used to improve the physical characteristics of sericin 

(Lamboni et al., 2015). Using sericin from an A. mylitta 

cocoon and glutaraldehyde as a cross linking agent, Mandal 

et al. (2009) created sericin/gelatin blended 2D films and 3D 

scaffolds. The combination of sericin and gelatin had a 

similar pore distribution, homogeneous morphology, 

increased mechanical strength, and good water uptake 

capacity. In an in vitro experiment, feline fibroblast cells 

(AH 927) attached and proliferated on sericin/gelatin-blend 

2D films and 3D scaffolds, which turned cytotoxic at higher 

sericin concentrations. But the sericin membrane cross linked 

with glutaraldehyde, Nayak et al. (2012) found that the 

physical qualities of the membrane increased along with the 

rate of enzymatic degradation and the viability and 

attachment of fibroblast cells. This finding offers insight into 

the role of sericin as a biomaterial. 

With the aim of creating a successful tissue-engineered 

skin replacement, Nayaket al. (2013) created 3D porous 

sericin matrices by using co-cultured of keratinocytes on the 

upper surfaces of matrices and fibroblast on the lower 

surfaces, utilising genipin as a crosslink and chitosan 

matrices as a control. Proliferation of sericin matrices 

observed for 28 days. Sericin matrices produce epidermal 

and dermal components in vitro, as shown by the 

multilayered stratified epidermal layer of keratinocytes that 

was revealed by histological investigation. In macrophages 

cultured on the sericin matrices, involucrin, collagen IV, and 

fibroblast surface protein are present, but there is minimal 

production of proinflammatory cytokines (TNF-, IL-1, and 

nitric oxide).The existence of paracrine signalling between 

keratinocytes and fibroblasts, which is necessary for skin 

tissue repair, is shown in histochemically stained sections. 

3D sericin matrices are skin-equivalent tissues for wound 

healing because they are biostable and have strong 

biocompatibility. 

Dinescu et al. (2013) developed 3D collagen-sericin 

scaffold with 10% hyaluronic acid and 5% chondroitin 

sulphate produced a uniform porous, homogenous structure 

resembling the extracellular matrix of cartilage having pore 

size 20–150 µm. Human adipose-derived stem cells were 

able to quickly expand and move on the scaffold, with 

increased cell adhesion and proliferation, and provided 

PPAR2 over expression, which upregulated expression of 

adipogenic markers and creating a viable biomaterial for 

cartilage tissue engineering. 

Now a days sericin based biomembrane used in stem 

cell technologies and tissue engineering. Inthanon et 

al.,(2016) developed poly(L-lactic-co-ε-caprolactone)-sericin 

(PLCL-SC) copolymer membrane which support the growth 

of human Wharton’s jelly mesenchymal stem cells 

(hWJMSC). These membranes are non-cytotoxic and 

promote the proliferation of human Wharton's jelly 

mesenchymal stem cells (hWJMSCs) by increasing the 

concentration of cyclin A and also promote the cell 

attachment due to increased focal adhesion kinase level. 

hWJMSC began to differentiate into a neuronal lineage on 

membrane topography. These findings imply that the PLCL-

SC electrospun membrane has some qualities that will be 

advantageous for tissue engineering and medicinal 

applications. A hydrogel prepared from collagen, hyaluronic 

acid and sericin used for human dermal tissue engineering 

(Vulpe et al., 2018). Fibroblast growth factor (FGF-1)-sericin 

hydrogel are also used for same purpose (Wang et al., 2018). 

Pankongadisak et al. (2018), prepared a chitosan/sericin 

hydrogel which is thermosensitive and have porous nature 

and is suitable for attachment of mouse fibroblast cell line 

(MC3T3-E1) and also it is non toxic to mouse which may be 

further utilized in bone tissue engineering. Siavashani et al. 

(2020) also revealed that fibroin /sericin 3D sponges, 

promising candidate for bone tissue engineering. 

As Antioxidant 

Due to research on the effects of free radicals in the 

body, which can have detrimental effects if their products are 

not neutralised by a powerful antioxidant system, dietary 

antioxidants have garnered a lot of interest (Sorg, 2004). For 

the first time in an in vitro investigation, Kato et al. (1998), 

demonstrated that sericin prevents lipid peroxidation in rat 

brain homogenate. The unstable polyunsaturated fatty acid-

derived lipid peroxides can breakdown into 

malondialdehyde, which has been linked to cardiovascular 

risk factors such hypertension, diabetes, and hyperlipidemia 

(Walter et al., 2004). The effectiveness of sericin in 

inhibiting tyrosinase, an enzyme involved in the browning of 

numerous foods as well as the production of melanin, as well 

as its role in cancer and neurological illnesses, underscores 

the demand for the investigation of compounds with 

antityrosinase activity (Cavalicri et al., 2002) 

Dash et al. (2008), compared the antioxidant potential 

of sericin derived from mulberry cocoon and non mulberry 

tasar cocoon and found that sericin which has extracted from 

tasar cocoon shell has high antioxidant activities. The method 

of extraction of sericin protein greatly influences the 

biological potential and thermal properties. Miguel et al. 

(2020) also confirmed that antioxidant properties of sericin 

varies according to the extraction method. Sericin extracted 
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from urea method has high antityrosinase activity, further 

author confirmed that flavonoids and carotenoids pigment 

present in cocoon responsible for tyrosinase inhibition. Kato 

et al. (1998), first provided the evidence that sericin have 

antityrosinase potential and also inhibit the lipid 

peroxidation. Amino acid serine and threonine responsible 

for antioxidant potential because it inhibit the tyrosinase 

enzyme responsible for browning reaction in food and also 

biosynthesis of melanin, for darker colour of skin so it serve 

as valuable ingredients in food and cosmetic industries. 

Takechi et al., 2014 also confirmed that sericin possesses 

antioxidant potential against various free radicals and serve 

as important ingredients in food industries. Antioxidant 

activity was clarified by DPPH, chemiluminescence, oxygen 

radical absorbance capacity (ORAC) and electron spin 

resonance (ESR). Sericin possess anti tyrosinase, anti-

elastase and ROS scavenging properties. Apart from this 

sericin exhibit immunological properties like TNF α, IFN-γ 
and IL-10. All these properties of sericin clarified that it 

serves as good ingredients in food industries, due to its 

antioxidant activities it reduces the oxidation of food and 

increases the shelf life of food. 

Sericin in culture media and cryopreservation 

Cryopreservation is regarded one of the basic method in 

cellular engineering for preservation of various cells, tissue 

and for ease of various cell culture-based medicinal therapies 

as well as for generating functioning cell lines in a constant 

supply (Sasaki et al., 2005). Fetal bovine serum (FBS) 

supplemented with 10% DMSO are generally used in animal 

cell culture for maintaining the cell line, but FBS are prone to 

virus such as bovine spongiform encephalitis and other 

infections. So sericin can be alternatively used as 

cryprotectant, serum free media for culturing of human 

dermal fibroblasts, human epidermal keratinocytes, the rat 

phaeochromocytoma cell line PC12 and insect (Spodoptera 

frugiperda) cell line Sf9 (Sasaki et al., 2005). Terada et al., 

2005 used the different molecular weight of sericin in cell 

culture medium. The sericin with molecular weight 5 to 100 

kDa called sericin S stimulates the proliferation of hybridoma 

cells. The sericin with higher molecular weight, 50 to 200 

kDa, also stimulates cell proliferation, but it had not effective 

sericin S. The result also proved that the sericin S serve as 

substitute of cytokine IL2, which is used as supplement in 

culture media, and successfully enhanced the proliferation of 

established T lymphocytes cell line CTLL-2. 

Kumar et al. (2014), reported that sericin can be used as 

cryopreservative for preservation of buffalo sperm. Different 

concentration of sericin 0.25,0.5,1.5 and 2% is used in media 

supplement and found that 0.25 and 0.5% sericin improved 

the antioxidant status of freezing media and semen motility 

by lowering the lipid peroxidation and increasing the 

integrity of plasma membrane of sperm. Morikawa et al. 

(2008), uses the sericin in place of fetal bovine serum (FBS) 

for the culture of rat islet cells. Sericin is alternative 

supplement for culturing and proliferation of rat insulinoma 

cell line RIN-5F (Ogawa et al., 2004) 

Terada et al. (2010) found that 0.01 to 0.1% sericin is 

effective for proliferation of murine hybridoma 2E3-O cell 

line. Sericin is used to culture four different varieties of 

mammalian cell line human hepatoblastoma HepG2, human 

epithelial HeLa and human embryonal kidney 293 cells in 

place of fetal bovine serum, which is the source of many 

infections and contaminations. Sericin support the 

proliferation of mammalian cell in dose dependent manner, 

and does not affected by autoclaving. Sericin is used as 

substitute of fetal bovine serum. 1% sericin in 10% 

dimethylsulfoxide have proved to be effective cryoprotectant 

medium for primary human mesenchymal stromal cells 

(hMSCs) as compared to immortalized human osteoblast as 

determined by cell viability and colony forming unit 

(Verdanova et al., 2014). 

Role of Sericin in Cosmetic Industries 

Sericin properties such as biocompatibility, 

biodegradability, and wettability have been employed in skin, 

hair, and nail cosmetics alone or in conjunction with silk 

fibroin. Sericin, when utilized in lotions, creams, and 

ointments, demonstrates a raised skin elasticity, anti-wrinkle, 

and anti-aging impacts (Padamwar and Pawar, 2004). Sericin 

based moisturizer have been developed for preventing the 

dryness of top layer of skin (Ziolkowsky, 1998) Moisturizers 

come in a wide range of types. Wetting agents such vegetable 

glycerine, water, jojoba oil, vitamin E oil, and sorbitol are 

included in the components (Kirikawa et al., 2000). Sericin 

gels containing hydroxyproline increase the epidermal layer 

and reduce skin impedance, which shows the moisturizing 

properties of sericin. Sericin have moisturizing ability and it 

reduces the trans epidermal water loss from the skin 

(Padamwar and Pawar, 2005) Sericin's moisturising impact 

on human skin was demonstrated in in vivo studies, which 

also revealed that it increased the level of hydroxyproline and 

hydrated the epidermal cells while reducing impedance. The 

increase in hydration was linked to sericin's proline content, 

which aids in the production of collagen and has an occlusive 

action that prevents the transepidermal water loss that causes 

skin dryness. Sericin retained the water layer in the upper 

layer of stratum corneum essential for smooth and plump 

skin. Thus, sericin itself possesses effective ingredients in 

moisturizing formulations of skin.  

Atopic dermatitis and ictiosis, which cause a drop in 

free amino acids in the stratum corneum, are two skin 

conditions that exhibit the dryness. Kim et al., found that 1% 

of sericin is an effective in the treatment of skin dryness of 

atopic dermatitis(AD).Dietary intake of sericin improved the 

epidermal hydration due to increase in filaggrin and free 

amino acid in stratum corneum. The induced gene expression 

of peroxisome proliferator-activated receptor (PPARγ), 

peptidylarginine deiminase-3 (PAD3), and caspase-14, 

molecules responsible for profilaggrin gene expression .Thus 

sericin serve as potent therapy for treatment of dry skin 

conditions.  

Sericin is highly hygroscopic molecules and inhibit the 

melanin synthesis (responsible for darker skin tone) in 

cortical layers it serves as valuable ingredients for cosmetic 

industries. Application of silk sericin on skin depends on its 

molecular weight. 12000-17000 Da molecular weight is 

generally preferred for hair care purpose and 5000-70000 is 

generally applied for skin cosmetic purposes (Jia young et 

al., 2013). Author further argued that the natural moisturizing 

factor present in stratum corneum of skin which maintain the 

moisture content of skin have very similar amino acid 

composition as that of found in sericin (Jia young et al., 

2013). A lotion with 1% weighted sericin and 4% weighted 

D-glucose provides a hydrating and conditioning effect (Dao 

et al., 2018; Yamada, 2001). Sericin-containing creams with 
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cleansing qualities that are better and less irritant to the skin 

(Sakamoto and Yamakishi, 2000; Takechi and Takamura, 

2014; Tsukada,1994). Sericin enhances the light-screening 

effects of UV filters such triazines and cinnamic acids ester 

in sunscreen formulations (Yoshioka et al., 2001). It also 

serves other purposes, such as the absorption of sweat and fat 

from the skin's sebaceous glands (Miyashita et al., 1999). 

Conclusion 

The silk fibre is an excellent source of renewable 

protein and due to its superior biocompatibility and unique 

mechanical qualities is being utilized in pharmaceuticals and 

cosmetic industries. Sericin is a valuable protein which is 

going to waste during reeling and degumming process, it 

could be beneficial bioresources if an economically efficient 

recovery process could be set up. Many researches have been 

conducted on the biomedical application of sericin. 

Significant advancements in the disciplines of tissue 

engineering and healthcare have been made possible by 

nanotechnology, especially considering the applications of a 

natural product for the development of new pharmaceutical 

formulations and biomaterials. SER-based formulations are a 

great example of nano-technological tools applied to the 

design of commercially feasible, biocompatible, and 

biodegradable compound, as well as its use as nanomedicine. 
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